

202 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Threads View
The Threads view provides the most information of the three views. There are several regions
to the Threads view, as depicted in the following graphic.

The central region is a graph, where the x-axis is a timeline in milliseconds. The y-axis pre-
sents mixed information. The top two rows are disk-read and disk-write activity. The remain-
ing rows are threads. These rows are labeled with a brief description and the thread identifier.
The various color segments in the bar graph indicate execution status. For example, green
indicates a running thread. The Visible Timeline Profile has an explanation of each category.
It also shows the percentage of time spent in each of these categories.

The execution categories are:

■ Execution The thread is running unimpeded.

■ Synchronization The thread is blocked for synchronization. The Concurrency
Visualizer will attempt to identify the source of the synchronization.

■ I/O The thread is blocking on an input/output event.

■ Sleep The thread voluntarily yields the CPU. Thread.Sleep is the most common
method for yielding the CPU.

■ Memory Management The thread is incurring blocking events related to memory-
related activities, such as page faults.

■ Preemption The thread is preempted by another thread. For example, this would
occur when a higher-priority thread starts running.

 Chapter 7 Reports and Debugging 203

■ UI Processing The user interface has a message pump, which handles messages for
the main window. For a responsive user interface, the message pump is typically idle
while waiting to respond to the next user interface message. This category indicates the
amount of work the user interface thread is performing in response to user interface
requests.

You can sort the threads in the graph on these categories. The sort button appears above
and to the left of the graph.

A segment is a contiguous region in one category of execution. You can point to a segment
for additional information. You’ll see different information depending on the category. As
shown in the following graphic for preemption, the replacing thread, the delay, and other
information is displayed in the tooltip.

You can also select segments in the graph. When you click a segment to select it, the selec-
tion enlarges for emphasis. In addition, some regions of the graph are in the context of the
selected segment, such as the Current stack and Unblocking stack results.

As with CPU Utilization view, you can enlarge the entire graph by using the Zoom slider con-
trol or by dragging horizontally to zoom in to a particular span.

You can also hide threads to focus on specific threads. Using the row labels, select the
threads you want to hide. Open the context menu for the selection, and choose Hide.
The graph for these is hidden threads and does not contribute to the analysis performed
for graph or reports. The calculations in the Threads view are adjusted to reflect only the
visible threads.

204 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Report Section
The report section, shown here, appears at the bottom of the graph in the Threads view.

The first tab is the Profile Report. The Profile Report can present different reports based on
the category selected in the Visible Timeline Profile. The default report is the Per-Thread
Summary report. Select Execution in the Visible Timeline Profile to see the Execution Profile
report. Select the Synchronization category for the Synchronization Blocking Profile report,
and so on. The Sleep Blocking Profile is shown in the next image. This report displays a sam-
pling showing when methods are in a sleep state. The Inclusive Blocking column includes
sampling for both the selected method and its calling methods. The Exclusive Blocking col-
umn shows the sampling for that method alone. In the following report, the last method
contributes the entire sampling, because the Inclusive Blocking and Exclusive Blocking col-
umns are identical.

The Current Stack tab shows the call stack of the selected segment in the Threads View
graph. If you select a different segment, the call stack is updated to reflect that. The Current
Stack report might display addition information; the category of the selected segment sets
the context for this information. For example, the report for a preemption segment, as shown
here, explains the type of synchronization and length of delay.

 Chapter 7 Reports and Debugging 205

The Unblocking Stack tab is helpful in finding a deadlock. When the category of the segment
is Synchronization, switch to the Unblocking Stack tab to view the call stack of the competing
thread that controls the synchronization.

The Cores View
The last view of the Concurrency Visualizer—and probably the simplest—is the Cores view,
which maps thread activity onto processor cores, as shown here.

The graph shows a timeline of the application applied to each processor. The y-axis shows
the processors, and the x-axis shows the timeline, in microseconds. In this graph, each thread
displays in a unique color. Gaps represent idle time on that processor core. If you point to a
particular segment, the thread identifier will appear.

Below the graph is a report on the number of context switches per thread. Excessive context
switches can adversely affect performance. Several factors can contribute to this problem,
including short tasks, improper chunking, and so on. The focus of the report is cross-core
context switching. From a performance perspective, cross-core context switching is especially
expensive relative to a normal context switch. Cross-core switching happens when a thread
resumes on a different processor after a context switch. You lose performance optimization
because the original processor cache related to the thread is unavailable.

Unlike the other views, the Cores view does not have any context menus.

206 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

In this tutorial, you will use each of the three views and the major features of the
Concurrency Visualizer. Three scenarios are presented to cover different aspects of
the Concurrency Visualizer. Expect similar but not identical results, because different
hardware and other variations in the environment can alter the outcome.

Enumerate a collection of numbers both sequentially and in parallel, and compare
the results with the Cores view

 1. Create a console application for C# in Visual Studio 2010. Add using statements for the
System.Threading and System.Threading.Tasks namespaces. In the Main method, ask for
user acknowledgement before exiting the application. If user acknowledgment is not
provided, the application will conclude prematurely.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace VisualizerTutorial
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}
In the Program class, create a method that represents compute bound work.
static void DoSomething()
{
 Thread.SpinWait(int.MaxValue / 10);
}
Define a method that iterates a collection of numbers from 0 to 1000. Iterate the
collection sequentially using a foreach method. Perform compute bound work in the loop
operation. In the Main method, start a thread with the previous function as the entry
point.
static void ParallelLoop()
{

 Chapter 7 Reports and Debugging 207

 var numbers = Enumerable.Range(0, 1000);
 foreach (var number in numbers)
 {
 DoSomething();
 }
}
static void Main(string[] args)
{
 new Thread(new ThreadStart(ParallelLoop)).Start();
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
}

 2. Start the Currency Visualizer from the Analyze menu, and then select Launch Perfor-
mance Wizard. Stop profiling the application after 5 to 10 seconds. Open the Cores
view in the Concurrency Visualizer. The graph will show load imbalance. Notice the light
utilization of most processor cores. The diagram also shows that one thread is running
across all the cores, which is not terribly efficient, either. This will cause cross-core con-
text switching.

 3. Now change your application to iterate the numbers collection by using a
Parallel.ForEach method for parallel programming.

static void ParallelLoop()
{
 var numbers = Enumerable.Range(0, 1000);
 Parallel.ForEach(numbers, (number) =>
 {
 Thread.SpinWait(int.MaxValue / 10);
 });
}

208 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 4. Rerun the Concurrency Visualizer and open the Cores view. This looks much better!
Every processor core shows continuous activity. In addition, each core is running a dif-
ferent thread, which is more efficient than what was shown in the previous results.

 5. Switch to CPU Utilization view. You’ll see that the application has high CPU utilization
and periodically peaks at 100% utilization. Your application is likely not executing alone
on your local machine; it probably shares the system with other running applications.
Those applications can also impact CPU utilization. You can test this. Remember, the
yellow portion of the graph is other processes, and utilization of the current process is
green.

 6. Start another instance of Visual Studio 2010. Keep the other session of Visual Studio
open. You are going to build a console application just to burn CPU cycles. Create
a console application for C# in Visual Studio 2010. Add a using statement for the
System.Threading namespace.

 Chapter 7 Reports and Debugging 209

 7. In the Main method, create a background thread that spins in an infinite loop. Set
thread priority to above normal.

 Thread t1 = new Thread(new ThreadStart(() => {
 while (true) Thread.SpinWait(int.MaxValue); }));
 t1.IsBackground = true;
 t1.Priority=ThreadPriority.AboveNormal;

 8. Similarly, create a second thread. Start both threads.

Thread t2 = new Thread(new ThreadStart(() => {
 while (true) Thread.SpinWait(int.MaxValue); }));
t2.IsBackground = true;
t2.Priority = ThreadPriority.AboveNormal;

t1.Start();
t2.Start();

 9. Read from the console to prevent the application from exiting. Display an appropriate
message. Build and run the application. The application will spin endlessly, consuming
CPU cycles.

 10. Start profiling the original application for the Concurrency Visualizer. With both appli-
cations running, the system will be noticeably less responsive. After five seconds, stop
profiling. The Concurrency Visualizer will open. Revisit the CPU Utilization view. There is
a noticeable variance in the graph. As expected, the amount of CPU utilization for other
applications is much greater than before. This is because those applications are com-
peting for processor resources.

210 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 11. The Concurrency Visualizer will attempt to analyze synchronization events to provide
instructive information. In this part of the tutorial, you will create two threads that com-
pete for a lock. This can be shown in the Threads view. In the Main method, define a
new object. The object is used for synchronization.

object sync = new object();

 12. Create and start two identical threads. In each thread, lock on the synchronization
object, and then sleep for a couple of seconds. This creates a race condition, and the
second thread to reach the lock will block. That thread will remain blocked for around
two seconds.

new Thread(new ThreadStart(() =>
{
 lock (sync)
 {
 Thread.Sleep(2000);
 }

})).Start();

new Thread(new ThreadStart(() =>
{
 lock (sync)
 {
 Thread.Sleep(2000);
 }

})).Start();

 13. Rebuild the application and start profiling for the Concurrency Visualizer. Stop the pro-
filing after 5 to 10 seconds. Open the Threads view. Find the two dependent threads in
the graph. One of the threads starts with a synchronization segment. Select and point
to that segment. The tooltip should confirm that the thread was blocked for nearly 2
seconds. A connector line appears. This vertical bar joins both threads participating in
the synchronization.

 Chapter 7 Reports and Debugging 211

 14. At the bottom of the Threads view, select the Current Stack tab to view the call stack
of the selected thread. Double-click the last (bottom) method of the call stack. You will
jump in the source code to the location of the synchronization, which is the lock state-
ment. Next, select the Unblocking Stack tab to view the call stack of the other thread.
Again, scroll to the bottom of the call stack. Double-click the last method. You will
jump to the location in source code where the lock was released.

Congratulations! You now know where the lock originated and was released. Here is the
complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace VisualizerTutorial
{
 class Program
 {
 static void DoSomething()
 {
 Thread.SpinWait(int.MaxValue / 10);
 }

 static void ParallelLoop()
 {
 var numbers = Enumerable.Range(0, 1000);
 Parallel.ForEach(numbers, (number) =>
 {
 DoSomething();
 });
 }
 static void Main(string[] args)
 {
 new Thread(new ThreadStart(ParallelLoop)).Start();

 object sync = new object();
 new Thread(new ThreadStart(() =>
 {
 lock (sync)
 {
 Thread.Sleep(2000);
 }

 })).Start();

 new Thread(new ThreadStart(() =>

212 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 lock (sync)
 {
 Thread.Sleep(2000);
 }

 })).Start();
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The Sample Application
This is the source code for the application used earlier in this chapter.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace Reporting_Example
{
 class XClass
 {
 public void MA(object param) { MB(param); }
 public void MB(object param) { MC(param); }

 object s1 = new object();
 object s2 = new object();

 public void MC(object param)
 {
 if (param == "1")
 {
 MD();
 }
 if (param == "2")
 {
 ME();
 }
 if (param == "3")
 {
 MF();
 }
 }

 public void MD()
 {

 Chapter 7 Reports and Debugging 213

 ME();
 }

 public void ME()
 {
 while (true) Thread.SpinWait(int.MaxValue / 20);
 }

 public void MF()
 {
 ML();
 }

 public void MG(object param)
 {
 MH(param);
 }

 public void MH(object param)
 {
 MI(param);
 }

 public void MI(object param)
 {
 if (param == "4")
 {
 MJ();
 }
 else
 {
 MK();
 }
 }

 public void MJ()
 {
 Monitor.Enter(s1);
 Thread.SpinWait(int.MaxValue / 20);
 Monitor.Enter(s2);
 }

 public void MK()
 {
 Monitor.Enter(s2);
 Thread.SpinWait(int.MaxValue / 10);
 Monitor.Enter(s1);
 }

 public void ML()
 {
 MM();
 }

 public void MM()

214 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 while (true) { Thread.SpinWait(int.MaxValue / 3); Debugger.Break(); };
 }

 }

 class Program
 {
 static XClass obj = null;

 static void Main(string[] args)
 {
 obj = new XClass();

 Task.Factory.StartNew(obj.MA, "1");
 Task.Factory.StartNew(obj.MA, "2");
 Task.Factory.StartNew(obj.MA, "3");

 Task.Factory.StartNew(obj.MG, "4");
 Task.Factory.StartNew(obj.MG, "5");

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

Summary
Visual Studio 2010 has been enhanced to assist in maintaining and debugging parallel appli-
cations. The enhancements include the introduction of new debugging windows and reports.
Parallel programs are generally more sophisticated and complex than sequential programs.
The Task Parallel Library (TPL) has done an excellent job of abstracting developers from the
hardcore details and nuances of developing a parallel application. However, when something
goes wrong, you need a new assortment of tools for debugging multicore applications. A
suite of these tools is now available in Visual Studio 2010.

You can now create and open managed dumps for post-mortem analysis. This is especially
beneficial for production debugging in which a full debugger might not be installed on the
target machine. Dumps are also convenient for remote debugging. For these reasons, the
integration of managed dumps into Visual Studio 2010 is helpful to all developers of man-
aged applications, including programmers of parallel applications.

The Threads and Call Stack windows are not new to Visual Studio but are nonetheless useful
when you are debugging a parallel application. The Threads window lists the active threads
with details such as thread identifier, status of the thread, category of thread, and thread
name. In the Threads window, you can flag a thread, freeze a thread, and switch context to a
particular thread. The Call Stack window shows the call stack of the current thread.

 Chapter 7 Reports and Debugging 215

The Parallel Tasks and Parallel Stacks windows are new in Visual Studio 2010. The Parallel
Tasks window provides detailed information on each task. Task identifier, status of the task,
location of the task, entry point method, and additional information are some of the details
available. As in the Threads window, in the Parallel Tasks window you can flag a task or freeze
the underlying thread. You can also jump to the source code for that task. There are two
views of the Parallel Stacks window. The Threads view shows the call stacks for active threads.
The Tasks view shows the call stacks from the perspective of active tasks. You can point to
nodes in the Parallel Stacks window to get valuable information on either tasks or threads.

The Concurrency Visualizer works with the Visual Studio Profiler to provide detailed graphs
and reports on the performance of a parallel application. The CPU Utilization view shows
utilization of logical cores for the current process, system processes, all other processes, and
idle time. The Threads view plots each thread along a timeline. Each thread is separated into
segments based on different categories, such as execution, synchronization, I/O, sleep, and
so on. The top rows of the Threads view are reserved for Disk Reads and Disk Writes. Finally,
the Cores view maps thread execution to processor cores.

Quick Reference
To Do this
View the current tasks of an application Open the Parallel Tasks window by clicking the Debug

menu and selecting Parallel Tasks Window.

Show additional detail about a particular
item in a parallel debugging window

Point to the item.

Display the call stack from the perspective
of parallel execution

Open the Parallel Stacks window by clicking the
Debug menu and selecting the Parallel Stacks
Window.

Scroll to a specific quadrant of a large
Parallel Stacks window view

Use the Bird’s Eye View button (in the lower-right
corner) and pan the view (the shaded area).

Profile a parallel application Start the Concurrency Visualizer by opening the
Analyze menu and then select Launch Performance
Wizard. In the Performance Wizard dialog box,
choose the Concurrency option.

Create a report to display CPU utilization
over a specific timeframe

In the Concurrency Visualizer, open the CPU
Utilization view.

In a deadlock, identify the controlling
thread

Open the Threads view of the Concurrency Visualizer.
Select a deadlocked segment. In the report section
(at the bottom), view the Unblocking Stack report.

 classes 217

Index

Symbols and Numbers
64-bit applications 197
== (double equal sign) 91
.NET Framework 4

concurrent collections 118, 144
customization 147
loop parallelism 15
parallel programming support 1
performance tuning 2
PLINQ 90
SpinLock and SpinWait structures 120
SpinWait 6
thread pool 15, 28, 94, 101, 103, 148, 171, 179
TPL 11, 16
wrappers for native critical sections 5

A
accounting applications 59, 149
Accounts Payable 149
Accounts Receivable 149
Action delegates

for loop 64
Parallel.Invoke method 22
PLINQ 99
TaskFactory.StartNew method 23

Add method 150
AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>
updateFactory>) method 135

Add(T item) method 131
AggregateException 30, 33, 57, 73, 87, 105, 116
AggregateException.InnerExceptions property 87, 105
Aggregate method 109
Algorithm Structure pattern 14
Amdahl’s Law

about 7
Gustafson’s Law 9
Speedup 16

antecedent task 46
arrays

integer arrays 95
parallel queries on string arrays 99

askCreationOptions.PreferFairness option 28
askFactory.ContinueWhenAll method 49
AsOrdered clause 103, 116
AsParallel clause 94, 102, 109, 115
AsParallel method 94, 95, 102
AsSequential clause 102, 116
associative property 76
asynchronous input-output, concurrent execution 4
AttachToParent option 27

B
Barrier class 38–41
Barsis, Edward, Gustafson’s Law 8
base keywords 173
benchmarking

affirmation of expected performance
improvement 148

Speedup 7
binary comparisons 36
Bird’s Eye View 195
Blocking and Exclusive Blocking 204
BlockingCollection 119, 137–144, 145
blocks, try/catch block 51
BoundedCapacity property 144
breakpoints 183
break statement 67
Bubble sort 36
buffering, PLINQ 102

C
cache misses 5
calculations, Group Tasks Pattern 12
call stacks 193
Call Stack window 185, 187, 214
cancellation

about 43–46
parallel loops 68
PLINQ 107

CancellationToken.Cancel method 116
CancellationToken property 107
CancellationTokenSource class 107, 116
CancellationTokenSource type 43
CancellationToken type 43
catch blocks

defining 105
handling exceptions 31
unhandled exceptions 73

C#, foreach loop 67
child and parent tasks 52
chunk size

about 148
custom paritioners 162
default 63, 86
Parallel.Create method 161
Partitioner<TSource> 163
task partitioners 156

classes
Barrier class 38–41
CancellationTokenSource class 107, 116
ConcurrentStack class 125
Interlocked class 76

218 classes (continued)

classes (continued)
MapReduce class 81, 84
Monitor class 76
OrderablePartitioner<TSource> 156
OrderablePartitioner<TSource> class 168–171, 179
Parallel class 64
ParallelOptions class 173
Partitioner<TSource> class 156, 162–167, 179
Program class 157, 160
Stopwatch class 95
System.Linq.ParallelEnumerable class 90
Task class 22–28
TaskScheduler class 171, 173, 174, 179

Cleanup method 175
CLR (common language runtime)

parallel programming and performance 1
unhandled exceptions in tasks 30

collections. See also concurrent collections
ConcurrentBag collection 130
ConcurrentDictionary collection 117
ConcurrentQueue collection 119
consumer-producer collections 148
integer collections 36
MapReduce pattern 80, 112
numbers collection 165
parallelism 19
Pivot sorts 38
producer-consumer collections 148–156
thread-safe and lock-free collections 6

combineAccumulatorsFunc function 109
comments in code 36
common language runtime. See CLR
commutative property 75
CompleteAdding method 141
compute-bound tasks 157
concurrency

parallel applications 4
testing: data parallelism 63

Concurrency Visualizer 197–212
about 215
Cores view 205–212
CPU Utilization view 200
performance tuning 2
Threads view 202–205

ConcurrentBag 130, 144
concurrent collections 117–146

BlockingCollection 137–144
concepts 119
ConcurrentBag 130
ConcurrentDictionary 135–137
ConcurrentQueue 129
ConcurrentStack 124–129
producer-consumer collections 119
SpinLock 120
SpinWait 122
synchronization 120–144

ConcurrentDictionary 117, 135–137, 144
concurrent execution, advantages 4

concurrent instruction and data streams 3
ConcurrentQueue 119, 129, 144
ConcurrentStack 119, 124–129, 144
ConcurrentStack class 125
Condition breakpoint 183
console applications 157
Console.ReadLine method 25, 66, 92
Console.WriteLine method 64, 66
consumer-producer collections 148
contention

custom schedulers 171
defined 5
kernel-mode and user-mode resources 5
SpinWait 123

context scheduler 171
context switches

about 4
performance 5, 21
per thread 205

continuation tasks 46–52
Continue methods 57
continue statement 67
cooperative cancellation 43
CopyTo method 152
Cores view 205, 205–212, 215
Count property 130, 131, 135, 144, 149, 179
Count reduction 109
CPU Utilization view 200, 208, 215
cross-core context switch

defined 5
performance 205

Ctrl+F5 shortcut 25
Ctrl+Shift+Esc key combination 61
Current Stack report 204
customization 147–180

context scheduler 171
identifying opportunities for 147
OrderablePartitioner<TSource> class 168–171
partitioners 162–171
Partitioner<TSource> class 162–167
producer-consumer collections 148–156
schedulers 171–178
task partitioners 156–162
task scheduler 172–178

custom partitioners, load balancing 148

D
database management 59
data collections, Geometric Decomposition pattern 14
Data Decomposition pattern 11
data dependency 12
data parallelism 59–88

compared to task parallelism 59
MapReduce pattern 80–86
reduction 74–80
unrolling sequential loops into parallel tasks 60–74

 graphics rendering, concurrent execution 219

F
F9 function key, breakpoint 183
factorials 78
Factory property 23
fantasy sports leagues 59
FIFO (first-in, first-out)

ConcurrentQueue 129
global queue 55

Filter breakpoint 183
Filter function 85
Filter parameter 84
Finding Concurrency pattern 11–13

Data Decomposition pattern 11
Data Sharing pattern 13
Group Task pattern 12
importance of 16
Order Tasks pattern 12
Task Decomposition pattern 11

Flynn’s taxonomy 3
ForAll method 99
ForAll operator 99
foreach loop 34, 65, 92
foreach method 92, 99
Fork/Join pattern 15
for loop

Finding Concurrency pattern 11
unrolling sequential loops into parallel tasks 64–67

for method 99
Freeze command 187
FROM clause 90
Function delegates 28
functions

combineAccumulatorsFunc function 109
Filter function 85
localFinally function 76
object-oriented programming 11
updateAccumulatorFunc function 109

FunctionTracker 127
Func<TResult> delegate 28

G
garbage collection, unhandled exceptions 32
Geometric Decomposition pattern 14
GetConsumingEnumerable method 140
GetDynamicPartitions method 163, 164, 179
GetEnumerator method 149, 151, 164, 179
GetInstanceCount method 151
GetOrderableDynamicPartitions method 168
GetOrderablePartitions method 168
GetPartitions method 162, 165, 179
GetScheduledTasks method 173, 175, 179
Ghemawat, Sanjay 80
global queue

custom schedulers 171
using 54

graphics rendering, concurrent execution 4

Data Sharing pattern 13
data streams

concurrent instruction 3
multiple 3–4

deadlocks, finding source 190
Dean, Jeffrey 80
debugging and reports 181–216

Concurrency Visualizer 197–212
debugging with Visual Studio 2010 1, 182–188
Parallel Stacks window 192–197
Parallel Tasks window 188–192
sample application 212–214

decryption routine, MISD 3
deferred execution 91
delegates, localFinally delegate 77
dependencies

data parallelism 62
LINQ reduction 108
Loop Parallelism pattern 15
Order Tasks pattern 12
unrolling sequential loops into parallel tasks 74

dequeuing, elements in a collection 119
derivative collections, MapReduce pattern 112
development life cycle 10
Dictionary collection 118
Divide and Conquer pattern 14
domains, queries and LINQ 90
double equal sign (==) 91
dual-core architecture

about 2
Speedup 6

dumps 184
duration, defined 97

E
efficiency. See performance
embarrassingly parallel 20
Enqueue (T item) method 130
Enumerable.Range method 110
equality, double equal sign (==) 91
ETW (Event Tracing for Windows) 197
events, synchronization 5
exceptions

about 57
cancellation exceptions 44
OperationCancelledException exception 46
PLINQ 105
unhandled exceptions in tasks 30–36
unrolling sequential loops into parallel tasks 72

Exclusive Blocking 204
ExecuteWithThreadLocal method 188
execution

categories 202
Group Tasks Pattern 12
time: preempting threads 4

expressions. See lambda expressions

220 GroupBy clause

GroupBy clause 102
group operation parameter 82
group tasks

Group Tasks Pattern 12
Order Tasks pattern 12

Gustafson’s Law 8

H
handling exceptions: unrolling sequential loops into

parallel tasks 72
hardware, performance improvement trends 2
heap, multithreading 4
Hit Count breakpoint 183
hyperthreading 200
Hyper-Threading Technology 3

I
IDisposable.Dispose method 126
idle time, processor cores 205
IEnumerable.GetEnumerator method 164
IEnumerable interfaces 89
IEnumerable<TSource> interface 163
implementation-agnostic, Algorithm Structure

pattern 14
Implementation Mechanisms pattern 16
in clause 91
indexes, data parallelism 62
InnerExceptions property 30
input-output requests, preempting threads 4
insertion sort 37
instruction streams, multiple 3–4
integer arrays 95
integer collections, sorting 36
interleaving

about 4
benefits of 16

Interlocked.Add method 77
Interlocked class 76
interrupting a loop 67–72
I/O-bound threads 104
I/O execution category 202
IProducerConsumerCollection interface 119, 120, 124,

129, 137, 145, 150, 179
IProducerConsumerCollection<T>interface 149
IsEmpty property 125, 130–131, 135
IsHeldByCurrentThread property 122
IsHeld property 122
IsSynchronized property 149, 152
IsSynchronize property 179
iterations

handling exceptions 72
independent loop iterations 74

J
Just-In-Time debugging 183

K
kernel-level locks, SpinWait 122
kernel-mode

contention 5
context switch 4
locking: concurrent collections 144

KeysNormalized property 168
KeysOrderedAcrossPartitions property 168
KeysOrderedInEachPartition property 168
KeyValuePairs 114

L
lambda expressions 28, 35, 52, 70, 79, 92, 110, 133, 160
Language Integrated Query. See LINQ
lastFinally operation 87
libraries

MapReduce library 81
TPL 11, 16, 60, 64, 147, 178, 214

LIFO (last-in, first-out) 55
lightweight synchronization

concurrent collections 120
objects 5
spinning 6
synchronization 16

link lists, Recursive Data pattern 14
LINQ (Language Integrated Query). See also PLINQ

about 89
LINQ to Objects 89
LINQ to SQL 89
LINQ to XML 89
reduction and dependencies 108

lists
Data Decomposition pattern 11
insertion sort 37

live debugging with Visual Studio 2010 182
load balancing

Geometric Decomposition pattern 14
parallel programming 16
task partitioners 156

localFinally delegate 77
localFinally function 76
localFinally method 77
localInit method 77
local queues, custom schedulers 171
Location breakpoint 183
LockRecursionException 121
lock statement 5, 76
logging scheduler 148
logical cores 200
logical gates, Barrier class 38
logical parallelism versus physical parallelism 4
logical versus physical cores 3
LongRunning option 27
loop-level parallelism 59
Loop Parallelism pattern 15

 Microsoft .NET Framework thread pool, performance 221

loops
Data Decomposition pattern 11
data parallelism 59
foreach loop 34, 65, 92
iterations: dependencies 15
Parallel.ForEach loop 158
Parallel.For loop 67
parallel loops 75
unrolling sequential loops into parallel tasks 60–74

M
MapReduce class 84
MapReduce library 81
MapReduce.Map method 81, 84
MapReduce pattern 80–86, 116
MapReduce, PLINQ 112–115
MapReduce.Reduce method 81
Master/Worker pattern 15
matching keys, MapReduce 82
matrices, multiplying 110
Memory Management execution category 202
merge options, PLINQ 102
methods

Add method 150
AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>
updateFactory>) method 135

Add(T item) method 131
Aggregate method 109
askFactory.ContinueWhenAll method 49
AsParallel method 94, 95, 102
Barrier class instance methods 39
CancellationToken.Cancel method 116
Cleanup method 175
CompleteAdding method 141
Console.ReadLine method 25, 66, 92
Console.WriteLine method 64, 66
Continue methods 57
CopyTo method 152
Enqueue (T item) method 130
Enumerable.Range method 110
ExecuteWithThreadLocal method 188
ForAll method 99
foreach method 92, 99
GetConsumingEnumerable method 140
GetDynamicPartitions method 163, 164, 179
GetEnumerator method 149, 151, 164, 179
GetInstanceCount method 151
GetOrderableDynamicPartitions method 168
GetOrderablePartitions method 168
GetPartitions method 162, 165, 179
GetScheduledTasks method 173, 175, 179
IDisposable.Dispose method 126
IEnumerable.GetEnumerator method 164
Interlocked.Add method 77
localFinally method 77
MapReduce.Map method 81, 84

MapReduce.Reduce method 81
Parallel.Create method 161
Parallel.ForEach method 65, 68, 76, 78, 86, 156, 157,

172, 176
Parallel.For method 63, 64, 68, 86, 156
Parallel.Invoke method 15, 19, 22, 31
ParallelLoopState.Break method 68
ParallelLoopState.IsStopped method 68
ParallelLoopState.Stop method 68, 87
ParallelQuery.ForAll method 115
ParallelQuery<TSource>.ForAll method 99
Partitioner.Create method 157, 158–159, 179
PerformRollback method 51
PushRange(T [] items) method 125
Push(T item) method 125
QueueTask method 173, 175, 179
Remove method 150
Setup method 175
SpinLock.Enter method 121
SpinLock.TryEnter method 121
SpinOnce() method 123
SpinUntil(Func<bool> condition) method 123
StartNew method 23
SupportsDynamicPartitions method 163, 168
Task.ContinueWith method 47–48, 51
TaskFactory.ContinueWhenAny method 50
TaskFactory.StartNew method 23–27, 29, 54
TaskScheduler.FromCurrentSynchronizationContext

method 172
Task.Start method 27
Task.WaitAll method 23
Task.WaitAny method 23
Task.Wait method 29, 32
Thread.Sleep method 54
Thread.SpinWait method 25, 95, 157, 160
ToArray method 152
TryAdd method 149, 179
TryAdd(T item) method 135
TryDequeue method 137, 173, 175, 179
TryDequeue(out T result) method 130
TryEnter method 121
TryExecuteTaskInline method 173, 179
TryExecuteTask method 173, 175, 179
TryPeek(out T result) method 131
TryPop(out T result) method 125
TryPopRange(T [] items) method 125
TryTake method 132, 137, 149, 179
TryTake(out T item, Int32 millisecondsTimeout)

method 144
TryTake(out T item) method 144
TryTake(out T result) method 131
TryUpdate(TKey key, TValue newValue, TValue

comparisonValue) method 135
Wait method 30
Where method 93
WithCancellation method 116

Microsoft .NET Framework thread pool, performance 21

222 MIMD (Multiple Instruction Streams/Multiple Data Streams)

MIMD (Multiple Instruction Streams/Multiple Data
Streams) 3

MISD (Multiple Instruction Streams/Single Data
Stream) 3

Monitor class 76
monitors, SpinWait 122
Monitor type 5
Moore’s Law

about 1
multi-core architecture and processing speed 2
shift to multicore processors 16

multicore processors 2–6
MIMD 3
multiple instruction streams/multiple data

streams 3–4
multithreading 4–5
parallel programming support 1
performance 2
PLINQ 97
ratio of single-core versus multicore performance 7
synchronization 5–6

multiple data streams 3–4
multiple instruction streams 3–4
Multiple Instruction Streams/Multiple Data Streams

(MIMD) 3
Multiple Instruction Streams/Single Data Stream

(MISD) 3
Multiple Program/Multiple Data (MPMD) 3
multitasking, concurrent execution 4
multithreading 4–5
mutexes 5

N
namespaces

ParallelBook namespace 81
System.Collection.Concurrent namespace 162
System.Collections.Concurrent namespace 6, 15, 117,

130, 174
System.Diagnostics namespace 95
System.Linq namespace 90
System.Threading namespace 95, 120, 122, 206
System.Threading, System.Threading.Tasks

namespace 174
System.Threading.Tasks namespace 64, 66, 76, 78, 82,

171, 206
native critical sections, .NET Framework 5
NextSpinWillYield property 123
Normalize operation 156
numbers collection 165

O
objects

AggregateException object 30
lightweight synchronization objects 5
ParallelOptions object 172, 176
synchronization objects 5

OpenMP 9
OperationCanceledException exception 46, 107
operations, Group Tasks Pattern 12
operators

ForAll operator 99
OrderablePartitioner<TSource> class 156, 168–171, 179
OrderBy clause 90, 102
order restrictions, data parallelism 62
Order Tasks pattern 12
originating threads 171
outer tasks 52
overhead. See performance
oversubscription

defined 5
interleaving 16

P
ParallelBook namespace 81
Parallel class 64
Parallel.Create method 161
ParallelExecutionMode clause 100, 116
ParallelExecutionMode enumeration 101
Parallel.ForEach loop 158
Parallel.ForEach method 65, 68, 76, 78, 86, 156, 157,

172, 176
Parallel.For loop 67
Parallel.For method 63, 64, 68, 86, 156
Parallel.Invoke method 15, 19, 22, 31
parallelism. See data parallelism; task parallelism

goal of 19
parallelization-to-overhead ratio 156
Parallel Language Integrated Query. See PLINQ
parallel loops

cancelling 68
reduction 75

ParallelLoopState.Break method 68
ParallelLoopState.IsExceptional property 73
ParallelLoopState.IsStopped method 68
ParallelLoopState.Stop method 68, 87
ParallelMergeOptions enumeration 102
ParallelOptions class 173
ParallelOptions object 172, 176
parallel programming

about 1–18
concurrent collections 117–146
customization 147–180
data parallelism 59–88
PLINQ 89–116
reports and debugging 181–216
task parallelism 19–58

ParallelQuery.ForAll method 115
ParallelQuery<TSource> 99
ParallelQuery<TSource>.ForAll method 99
Parallel Stacks window 192–197

about 215
performance execution 2
Tasks view 196–197
Threads view 193–196

 properties 223

Parallel Tasks window 188–192
about 215
performance execution 2

parameters
Filter parameter 84
group operation parameter 82
MapReduce pattern 113
ParallelExecutionMode enumeration 101
TaskContinuationOptions parameter 50

parent and child tasks 52
parent-child relationship. 46
Partitioner.Create method 157, 158–159, 179
partitioners

custom partitioners 162–171
load balancing 148
OrderablePartitioner<TSource> class 168–171
Partitioner<TSource> class 162–167
task partitioners 156–162

Partitioner<TSource> class 156, 162–167, 179
patterns 9–15

Algorithm Structure pattern 14
Data Decomposition pattern 11
Data Sharing pattern 13
engineering solutions with 9
Finding Concurrency pattern 11–13
Group Task pattern 12
Order Tasks pattern 12
producer-consumer pattern 148
Supporting Structures pattern 15
Task Decomposition pattern 11

Payroll 149
performance

benchmarking 148
Bubble sort 36
CLR 1
ConcurrentBag 130
concurrent collections 117
context switches 4, 5
custom schedulers 171
data parallelism example 61
dependencies 20
Gustafson’s Law 8
hardware trends 2
optimizing the use of the available processor cores

with parallel execution of cores 1
PLINQ queries 97, 100
scaling 20
sequential processing 6
Speedup 6, 16
task partitioners 156
threads 21
unrolling sequential loops into parallel tasks 63
Visual Studio Profiler and Concurrency Visualizer 2

Performance Explorer 200
PerformRollback method 51
physical parallelism versus logical parallelism 4
physical versus logical cores 3
pivot sort 38, 42

PLINQ (Parallel Language Integrated Query) 89–116
about 90–98
AsOrdered 103
AsSequential 102
cancellation 107
ForAll operator 99
handling exceptions 105
MapReduce 112–115
MapReduce pattern 81, 87
operators and methods 99–105
ParallelExecutionMode 100
reduction 108–115
WithDegreeOfParallelism 104
WithMergeOptions 101

polling, cooperative cancellation 43
post-mortem analysis 184
precedence, unhandled exceptions 73
predecessor dependency 12
preempting threads 4
Preemption execution category 202
preemption segments 204
PreferFairness option 27
priority, preempting threads 4
problem domain, software development life cycle 10
processes, synchronization 5
processor affinity 5
processor cores, performance 1
processor speed and heat 2
Processor Utilization 98
producer-consumer collections 119, 148, 148–156
producer-consumer pattern, concurrent collections 144
Profile Report 204
Program class 157, 160
properties

AggregateException.InnerExceptions property 87,
105

associative property 76
BoundedCapacity property 144
CancellationToken property 107
commutative property 75
Count property 130, 131, 135, 144, 149, 179
Factory property 23
InnerExceptions property 30
IsEmpty property 125, 130–131, 135
IsHeldByCurrentThread property 122
IsHeld property 122
IsSynchronized property 149, 152
IsSynchronize property 179
KeysNormalized property 168
KeysOrderedAcrossPartitions property 168
KeysOrderedInEachPartition property 168
NextSpinWillYield property 123
ParallelLoopState.IsExceptional property 73
SupportsDynamicPartitions property 164, 179
SyncRoot property 118
Task.Result property 29
TaskScheduler property 173
Task.Status property 31

224 PushRange(T [] items) method

PushRange(T [] items) method 125
Push(T item) method 125

Q
quad-core architecture

about 2
Speedup 6

queries. See LINQ; PLINQ
queues

Data Decomposition pattern 11
elements in a collection 119
global queue 54
work-stealing queue 54

QueueTask method 173, 175, 179
quick sort 38

R
range partitioning, chunk size 148, 159
read-only data access type 13
read-write data access type 13
Recursive Data pattern 14
reduction

data access type 13
data parallelism 62, 74–80
defined 13
Group Tasks Pattern 12
PLINQ 108–115

refactoring, pivot sort 42
registry keys, synchronization 5
relationships 46–56

continuation tasks 46–52
Order Tasks pattern 12
parent and child tasks 52
work-stealing queue 54

Release mode 25
Remove method 150
reports and debugging 181–216

Concurrency Visualizer 197–212
debugging with Visual Studio 2010 182–188
Parallel Stacks window 192–197
Parallel Tasks window 188–192
sample application 212–214

resources and threads 20

S
sales analysis 59
sample application 212–214
Save Dump As dialog box 184
scalability

about 19
concurrent collections 117
Data Sharing pattern 13
PLINQ 94

schedulers 171–178
context scheduler 171
task scheduler 172–178

scheduling, tasks and threads 20
scientific applications 59
segments, execution categories 203
SELECT and FROM clauses 90
Select clause 101–102
semaphores

about 5
SpinWait 122

sequential loops, unrolling into parallel tasks 60–74
serializing

access: PLINQ 115
parallel applications 6
portions of your LINQ query 102

serial operations, decomposing into parallel tasks 14
Setup method 175
Shakespeare, William 84
shared files, data parallelism 62
shared memory, data parallelism 62
sharing data 13
shortcuts

Ctrl+F5 shortcut 25
Ctrl+Shift+Esc key combination 61
F9 function key, breakpoint 183

SIMD (Single Instruction Stream/Multiple Data
Streams) 3

single-core processors 2
interleaving 4
performance 6
ratio of single-core versus multicore performance 7
shift to multicore processors 16
SISD 3

Single Program/Multiple Data. See SPMD
SISD (Single Instruction Stream/Single Data Stream) 3
Sleep Blocking Profile 204
Sleep execution category 202
software development life cycle 10
software patterns. See patterns
sort examples 36–42

Barrier class 38–41
Bubble sort 36
insertion sort 37
pivot sort 38, 42

source-level debugging 182
Speedup 6–9

Amdahl’s Law 7
Gustafson’s Law 8
task partitioners 156

SpinLock 120, 144
SpinLock.Enter method 121
SpinLock.TryEnter method 121
spinning 5
SpinOnce() method 123
SpinUntil(Func<bool> condition) method 123
SpinWait 6, 122, 144
SPMD (Single Program/Multiple Data)

MIMD model 3
pattern 15

SQL queries, LINQ 90

 threads 225

stacks
Data Decomposition pattern 11
multithreading 4
size of and threads 21

start dependency 12
StartNew method 23
Stopwatch class 95
streams, multiple instruction streams/multiple data

streams 3–4
stress testing, data parallelism 63
string arrays, parallel queries 99
subtasks 46, 52
successor dependency 12
successor task 47
Supporting Structures pattern 15
SupportsDynamicPartitions method 163, 168
SupportsDynamicPartitions property 164, 179
synchronization 120–144

BlockingCollection 137–144
collections 118
ConcurrentBag 130
concurrent collections 144
ConcurrentDictionary 135–137
ConcurrentQueue 129
ConcurrentStack 124–129
data access 13
dependencies 74
multicore computing 5–6
SpinLock 120
SpinWait 122

Synchronization Blocking Profile report 204
Synchronization execution category 202
synchronization objects 5
SyncRoot property 118
System.Collection.Concurrent namespace 162
System.Collections.Concurrent namespace 6, 15, 117,

130, 174
System.Diagnostics namespace 95
System.Linq namespace 90
System.Linq.ParallelEnumerable class 90
System.Threading namespace 95, 120, 122, 206
System.Threading, System.Threading.Tasks

namespace 174
System.Threading.Tasks namespace 64–65, 76, 78, 82,

171, 206

T
Task class 22–28

Parallel.Invoke method 22
TaskFactory.StartNew method 23–27
Task.Start method 27

TaskContinuationOptions parameter 50
Task.ContinueWith method 47–48, 51
TaskCreationOption 27
TaskCreationOption.LongRunning option 28
TaskCreationOptions.AttachedToParent option 53, 57
Task Decomposition pattern 11

TaskFactory.ContinueWhenAny method 50
TaskFactory.StartNew method 23–27, 29, 54
task parallelism 19–58

about 19–30
Barrier class 38–41
Bubble sort 36
cancellation 43–46
compared to data parallelism 59
continuation tasks 46–52
Function delegates 28
insertion sort 37
parent and child tasks 52
pivot sort 38, 42
relationships 46–56
sort examples 36–42
Task class 22–28
threads 21
unhandled exceptions in tasks 30–36
unrolling sequential loops into parallel tasks 60–74
work-stealing queue 54

Task Parallelism pattern 14
Task Parallel Library. See TPL
Task.Result property 29
tasks

about 21
compute-bound tasks 157
cooperative cancellation 43
.NET Framework 4 thread pool 28
partitioners 156–162
relationships: Order Tasks pattern 12
schedulers 148, 172–178
subtasks 52

TaskScheduler class 171, 173, 174, 179
TaskScheduler.FromCurrentSynchronizationContext

method 172
TaskScheduler property 173
Task.Start method 27
Task.Status property 31
Tasks view of the Parallel Stacks window 196–197
Task.WaitAll method 23
Task.WaitAny method 23
Task.Wait method 29, 32
TBB (Threading Building Blocks) 9
testing

and data parallelism 63
Speedup 7

threads
concurrent collections 118
context switches 205
debugging 185–188
I/O-bound threads 104
local storage 21
originating threads and the context scheduler 171
queuing and dequeuing elements in collections 119
SpinWait 123
synchronization 5
task parallelism 21
tasks and scheduling 20

226 threads (continued)

threads (continued)
thread-local data: Data Sharing pattern 13
tracking thread ownership 121

thread-safe applications 5
Thread.Sleep method 54
Thread.SpinWait method 25, 95, 157, 160
Threads view

about 202–205
Disk Reads and Disk Writes 215
of the Parallel Stacks window 193–196

Threads window 185, 214
ToArray method 152
Toub, Stephen 80
TPL (Task Parallel Library)

customization 147
customizing 178
granularity 60
Implementation Mechanisms design phase 11
.NET Framework 4 16
parallel for loop 64
using 214

tracking thread ownership 121
trees, Recursive Data pattern 14
TryAdd method 149, 179
TryAdd(T item) method 135
try blocks 105
try/catch block 51, 141
TryDequeue method 137, 173, 175, 179
TryDequeue(out T result) method 130
TryEnter method 121
TryExecuteTaskInline method 173, 179
TryExecuteTask method 173, 175, 179
TryPeek(out T result) method 131
TryPop(out T result) method 125
TryPopRange(T [] items) method 125
TryTake method 132, 137, 149, 179
TryTake(out T item, Int32 millisecondsTimeout)

method 144
TryTake(out T item) method 144
TryTake(out T result) method 131
TryUpdate(TKey key, TValue newValue, TValue

comparisonValue) method 135
tuples, task partitioners 157
two-phase synchronization 123

U
UI Processing execution category 203
Unblocking Stack 205
undersubscription 5
unhandled exceptions

about 56
in tasks 30–36

unit testing, data parallelism 63
unrolling sequential loops into parallel tasks 60–74

dependencies 74
for loop 64–67
handling exceptions 72

interrupting a loop 67–72
performance 63

updateAccumulatorFunc function 109
user interface, concurrent execution 4
user-mode

contention 5
context switch 4

using statement 23, 41, 92
utilization, PLINQ queries 104

V
virtual cores

about 200
Hyper-Threading Technology 3

Visible Timeline Profile 202, 204
Visual Studio 2010 182–188

debugging threads 185–188
debugging windows 1
live debugging 182
parallel programming support 1
post-mortem analysis 184

Visual Studio Profiler, performance tuning 2

W
Wait method 30
weather reporting 59
When Hit breakpoint 183
Where clause 92
Where method 93
Windows operating system

closing threads 20
thread scheduling 21

Windows Task Manager 61
WithCancellation method 116
WithDegreeOfParallelism clause 104, 116
WithExecutionMode clause 101
WithMergeOptions clause 101, 116
word count example 84–86
work stealing

performance optimization 55
queue 54

wrappers, .NET Framework 5
write-only data access type 13

Y
yield statement 164

Donis Marshall
Donis Marshall has more than 20 years of experience using Microsoft technologies to design
and build enterprise software for leading companies in several industries. As a Microsoft
MVP, he is recognized as an exceptional technical community leader who actively shares
his real-world expertise with others. Experienced in training developers and engineers with
Microsoft products, Donis is the author of Programming Microsoft Visual C# 2008, Solid
Code, and Programming Microsoft Visual C# 2005.

