

202 Parallel Programming with Microsoft Visual Studio 2010 Step by Step
The Threads View

The Threads view provides the most information of the three views. There are several regions
to the Threads view, as depicted in the following graphic.

The central region is a graph, where the x-axis is a timeline in milliseconds. The y-axis pre-
sents mixed information. The top two rows are disk-read and disk-write activity. The remain-
ing rows are threads. These rows are labeled with a brief description and the thread identifier.
The various color segments in the bar graph indicate execution status. For example, green
indicates a running thread. The Visible Timeline Profile has an explanation of each category.
It also shows the percentage of time spent in each of these categories.

The execution categories are:

B Execution The thread is running unimpeded.

B Synchronization The thread is blocked for synchronization. The Concurrency
Visualizer will attempt to identify the source of the synchronization.

B |/O The thread is blocking on an input/output event.

B Sleep The thread voluntarily yields the CPU. Thread.Sleep is the most common
method for yielding the CPU.

B Memory Management The thread is incurring blocking events related to memory-
related activities, such as page faults.

B Preemption The thread is preempted by another thread. For example, this would
occur when a higher-priority thread starts running.

Chapter 7 Reports and Debugging 203

B Ul Processing The user interface has a message pump, which handles messages for
the main window. For a responsive user interface, the message pump is typically idle
while waiting to respond to the next user interface message. This category indicates the
amount of work the user interface thread is performing in response to user interface
requests.

You can sort the threads in the graph on these categories. The sort button appears above
and to the left of the graph.

A segment is a contiguous region in one category of execution. You can point to a segment
for additional information. You'll see different information depending on the category. As
shown in the following graphic for preemption, the replacing thread, the delay, and other
information is displayed in the tooltip.

ConcurrencyVisualizerl10626(7).vsp *ax

<@ = Current View: ‘Threads '|

CPU Uktilization Threads Cores

Sortby: StartTme ~| 4 + T X|& | Zoom|] 2

] 2 4 H H 0 12 4 16 1 0,
Name Seconds | oy 0 Ly b by by by B s B s b bea g |
Disk 0 Reads
Disk 0 Writes | |

Main Thread{3580)
Debugger Helper(6256)
Worker Thread(6384)
CLR Worker Trveacts202) | ANEHINNNRFE NN i | |

CIR Worker Thread(6544) | [N Category = Preemption
Worker Thread(6416) Subcategory = Preempted/Quantum Expired

Replaced by thread TID=6828, process PID=5452 (devenv)

CLR Worker Thread(7098) | LRI EIN] start - 3885.8057 ms v
| Delay = 33.0245 ms
Visible Timeline Profile i
Click to see the stack ack | @ Hints
44% W Execution
25% M Synchronization Category = Preemption
Subcategory = Preempted/Quantum Expired
0% N 1O Replaced by thread TID=7088, process PID=5452 (devenv)
133 N Sleep - Delay = 96.3563 ms

You can also select segments in the graph. When you click a segment to select it, the selec-
tion enlarges for emphasis. In addition, some regions of the graph are in the context of the
selected segment, such as the Current stack and Unblocking stack results.

As with CPU Utilization view, you can enlarge the entire graph by using the Zoom slider con-
trol or by dragging horizontally to zoom in to a particular span.

You can also hide threads to focus on specific threads. Using the row labels, select the
threads you want to hide. Open the context menu for the selection, and choose Hide.
The graph for these is hidden threads and does not contribute to the analysis performed
for graph or reports. The calculations in the Threads view are adjusted to reflect only the
visible threads.

204 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Report Section

The report section, shown here, appears at the bottom of the graph in the Threads view.

{5 Profile Report |“_ Current stack

L Unblocking stack | & Hints

Per Thread Summary

Time [m...

1064
7164
5124
G140

6676
4924
a5

5324
5940

@
= =
=1)
=]

Thread 1D

6488
5788
G648
G788

The first tab is the Profile Report. The Profile Report can present different reports based on
the category selected in the Visible Timeline Profile. The default report is the Per-Thread
Summary report. Select Execution in the Visible Timeline Profile to see the Execution Profile
report. Select the Synchronization category for the Synchronization Blocking Profile report,
and so on. The Sleep Blocking Profile is shown in the next image. This report displays a sam-
pling showing when methods are in a sleep state. The Inclusive Blocking column includes
sampling for both the selected method and its calling methods. The Exclusive Blocking col-
umn shows the sampling for that method alone. In the following report, the last method
contributes the entire sampling, because the Inclusive Blocking and Exclusive Blocking col-
umns are identical.

Visible Timeline Profile

m

1] Profile Report | 22 Cument stack | T Unblocking stack | & Hints
0% | Execution r :
i L Snchonaain Sleep Blacking Profile Noise reducton st 2 % Just My Code | Export
0% Vo Name Instances Inclusive Bloc. Fxclusive Bloc.. A&FT/ Wait Cateq... Details
20% BN Sleep 4 ntaskml.ec 1 325756 o
o~ TR — 4 [ntoskml.ee] 1 33925156] nitoskmintoskiml.exe]
" N 4 [mtoskrnl.exe] 1 33925758] niteskml![ntoskml.exe]
% Preemption # [mtaskmlexe] 1 EERLTLS o nteskml[nteskmlexe]
O% HEE Ul Processing 4 [ntoskmlexe] 1 IFLETSE 0 ntoskml{ntoskmi.exe]
s i
Piee Theead Summary [ntesknl.exe] 1 33925758] niteskmll[ntoskml.exe]
[mtoskmlese] 1 325756 33925758 Sleep or Yield riteskernl[teskernl. exe]
File Operatione

b

The Current Stack tab shows the call stack of the selected segment in the Threads View
graph. If you select a different segment, the call stack is updated to reflect that. The Current
Stack report might display addition information; the category of the selected segment sets
the context for this information. For example, the report for a preemption segment, as shown
here, explains the type of synchronization and length of delay.

Chapter 7 Reports and Debugging 205

] Profile Report | = Currentstack | £ Unblocking stack | @ Hints

Category = Preemption
Subcategory = LPCs/Interrupts
Delay = 0.0667 ms

ntoskrnl.exe![ntoskrnl.exe]
ntoskrnl.exe![ntoskrnl.exe]
ntoskrnl.exe![ntoskrnlexe]

The Unblocking Stack tab is helpful in finding a deadlock. When the category of the segment
is Synchronization, switch to the Unblocking Stack tab to view the call stack of the competing
thread that controls the synchronization.

The Cores View

The last view of the Concurrency Visualizer—and probably the simplest—is the Cores view,
which maps thread activity onto processor cores, as shown here.

CPU Utilization Threads Cores Demystlfy’..‘l
Context switches that also cross from one logical core to another can reduce the performance of your process.
Zoom :l
1000

Name Millisecongds L L
Logica Core 1 —
Logical Core 2
Logica Core 3 N R
[I I S I S S S S S S S N =

The graph shows a timeline of the application applied to each processor. The y-axis shows
the processors, and the x-axis shows the timeline, in microseconds. In this graph, each thread
displays in a unique color. Gaps represent idle time on that processor core. If you point to a
particular segment, the thread identifier will appear.

Below the graph is a report on the number of context switches per thread. Excessive context
switches can adversely affect performance. Several factors can contribute to this problem,
including short tasks, improper chunking, and so on. The focus of the report is cross-core
context switching. From a performance perspective, cross-core context switching is especially
expensive relative to a normal context switch. Cross-core switching happens when a thread
resumes on a different processor after a context switch. You lose performance optimization
because the original processor cache related to the thread is unavailable.

Unlike the other views, the Cores view does not have any context menus.

206

Parallel Programming with Microsoft Visual Studio 2010 Step by Step

In this tutorial, you will use each of the three views and the major features of the
Concurrency Visualizer. Three scenarios are presented to cover different aspects of
the Concurrency Visualizer. Expect similar but not identical results, because different
hardware and other variations in the environment can alter the outcome.

Enumerate a collection of numbers both sequentially and in parallel, and compare
the results with the Cores view

1. Create a console application for C# in Visual Studio 2010. Add using statements for the
System.Threading and System.Threading.Tasks namespaces. In the Main method, ask for
user acknowledgement before exiting the application. If user acknowledgment is not
provided, the application will conclude prematurely.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace VisualizerTutorial

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Press enter to exit");
Console.ReadLine();
}
}
}

In the Program class, create a method that represents compute bound work.
static void DoSomething()
{
Thread.SpinWait(int.MaxValue / 10);
}
Define a method that iterates a collection of numbers from 0 to 1000. Iterate the
collection sequentially using a foreach method. Perform compute bound work in the Toop
operation. In the Main method, start a thread with the previous function as the entry
point.
static void ParallelLoop()
{

Chapter 7 Reports and Debugging 207

var numbers = Enumerable.Range(0, 1000);
foreach (var number in numbers)

{
DoSomething();
}
}
static void Main(string[] args)
{
new Thread(new ThreadStart(ParallelLoop)).Start(Q);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
}

2. Start the Currency Visualizer from the Analyze menu, and then select Launch Perfor-
mance Wizard. Stop profiling the application after 5 to 10 seconds. Open the Cores
view in the Concurrency Visualizer. The graph will show load imbalance. Notice the light
utilization of most processor cores. The diagram also shows that one thread is running

across all the cores, which is not terribly efficient, either. This will cause cross-core con-
text switching.

CPU Usiization | Theeads | | Cores Dermystidy.
Cantext switches that ki cross from one legical core to ancther can reduce the perfarmance of your process.

prerm— B] O . |

Logical Care 2 I W

Logieal Core 3 i] - 1
Logical Core 4 I |
Legial Care 5 m o—

Logicsl Core 6 | | I .
Logical Cace 7 T] . _un

3. Now change your application to iterate the numbers collection by using a
Parallel.ForEach method for parallel programming.

static void ParallelLoop()
{
var numbers = Enumerable.Range(0, 1000);
Parallel.ForEach(numbers, (nhumber) =>
{
Thread.SpinWait(int.MaxValue / 10);
s

208 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

4.

6.

Rerun the Concurrency Visualizer and open the Cores view. This looks much better!
Every processor core shows continuous activity. In addition, each core is running a dif-
ferent thread, which is more efficient than what was shown in the previous results.

CPU Unilization | Theeacs | Cares |Dewv'"t|
Context switches that a4 cross from ane logical core 19 anather can reduce the performance of your process

Zoam | |
7 T] 0 ¥ B
Mame Seconds | L L L L L L L L i 1 L i " L 1 L L L L | L i L L 1

Logical Core 0] I

Logieal Core 3 LLLLLELT LT T T Ty 0 | [|
Logieal Core 2 NENENNNRNRRRRRNRERTnnmeerrr e rreeerevreererreeeeereeenenn
Logical Core 3 AR W00 YOO 1 O A
Logical Core & B W R | O O M T

cooertee | R N ORI N A T 0 0 R S A O AR
Logical Core 6 CLLLLL LT DL L RO e]

Lagicsl Core 7 LULLERT L L L TR, o o || |

Switch to CPU Utilization view. You'll see that the application has high CPU utilization
and periodically peaks at 100% utilization. Your application is likely not executing alone
on your local machine; it probably shares the system with other running applications.
Those applications can also impact CPU utilization. You can test this. Remember, the
yellow portion of the graph is other processes, and utilization of the current process is
green.

'CPU Utilization Threads Cares Demystify..
Zoom
Average CPU utilization for this process: 80%
8 [Other Processes
4 System Process
I 1 { 1 [ldle Process
7 S, 1 A E23 VisuslizerTutorial (PID=6412)

Number of Logical Cores
-
|

101737

Start another instance of Visual Studio 2010. Keep the other session of Visual Studio
open. You are going to build a console application just to burn CPU cycles. Create

a console application for C# in Visual Studio 2010. Add a using statement for the
System.Threading namespace.

7.

10.

Chapter 7 Reports and Debugging 209

In the Main method, create a background thread that spins in an infinite loop. Set
thread priority to above normal.

Thread tl = new Thread(new ThreadStart(() => {
while (true) Thread.SpinwWait(int.MaxValue); }));

tl.IsBackground = true;

tl.Priority=ThreadPriority.AboveNormal;

Similarly, create a second thread. Start both threads.

Thread t2 = new Thread(new ThreadStart(() => {
while (true) Thread.SpinWait(int.MaxValue); }));

t2.IsBackground = true;

t2.Priority = ThreadPriority.AboveNormal;

tl.Start(Q);
t2.Start(Q);
Read from the console to prevent the application from exiting. Display an appropriate
message. Build and run the application. The application will spin endlessly, consuming
CPU cycles.

Start profiling the original application for the Concurrency Visualizer. With both appli-
cations running, the system will be noticeably less responsive. After five seconds, stop
profiling. The Concurrency Visualizer will open. Revisit the CPU Utilization view. There is
a noticeable variance in the graph. As expected, the amount of CPU utilization for other
applications is much greater than before. This is because those applications are com-
peting for processor resources.

CPU Utilization Threads Cores
Zoom |

Average CPU utilization for this process: 42%

[Other Processes

B8 System Process

[ldle Process

EZZ VisuslizerTuterial (PID=4024)

Mumber of Logical Cores

210 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

11.

12.

13.

The Concurrency Visualizer will attempt to analyze synchronization events to provide
instructive information. In this part of the tutorial, you will create two threads that com-
pete for a lock. This can be shown in the Threads view. In the Main method, define a
new object. The object is used for synchronization.

object sync = new object();

Create and start two identical threads. In each thread, lock on the synchronization
object, and then sleep for a couple of seconds. This creates a race condition, and the
second thread to reach the lock will block. That thread will remain blocked for around
two seconds.

new Thread(new ThreadStart(()

Il
\%

{
Tlock (sync)
{
Thread.STeep(2000);
}

) .StartQ;

new Thread(new ThreadStart(() =>
{
Tlock (sync)
{
Thread.STeep(2000);
}

) .startQ;

Rebuild the application and start profiling for the Concurrency Visualizer. Stop the pro-
filing after 5 to 10 seconds. Open the Threads view. Find the two dependent threads in
the graph. One of the threads starts with a synchronization segment. Select and point
to that segment. The tooltip should confirm that the thread was blocked for nearly 2
seconds. A connector line appears. This vertical bar joins both threads participating in
the synchronization.

CPUUtization | Theeads | Cores -
Sotby: SatTme « # # T T B | Zoem £

w0t w0 200 0 00 150 wece
Hame il T S SR TR N S WA SO S WSS SO S WA SO S S VAN VAN VAN TN TN VA VAN VA T VAN VNS VN VN T T T A T Iy
Ok 0 Reads [|
Disk 0 Writes 11 I I N

Mars Threa(5 355

Werker Thresd[7126) .|
Detogges Hetpertsss |
o werder Theeaa772) I

CLR Worker Thiead(5558])
LR Worker Thread(2916)

Worker Theead|5164)

Category = Skeep
Subkategory = Sleep or Yield
Start = 23640036 e
Delay = 19995614 me.

Chack t s0e the skack !

Chapter 7 Reports and Debugging 211

14. At the bottom of the Threads view, select the Current Stack tab to view the call stack
of the selected thread. Double-click the last (bottom) method of the call stack. You will
jump in the source code to the location of the synchronization, which is the lock state-
ment. Next, select the Unblocking Stack tab to view the call stack of the other thread.
Again, scroll to the bottom of the call stack. Double-click the last method. You will
jump to the location in source code where the lock was released.

Congratulations! You now know where the lock originated and was released. Here is the
complete application.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace VisualizerTutorial

{
class Program
{
static void DoSomething()
{
Thread.SpinWait(int.MaxValue / 10);
}
static void ParallelLoop()
{
var numbers = Enumerable.Range(0, 1000);
Parallel.ForEach(numbers, (number) =>
{
DoSomething();
s
}
static void Main(string[] args)
{

new Thread(new ThreadStart(ParallellLoop)).Start();

object sync = new object();
new Thread(new ThreadStart(() =>

{
Tock (sync)
{
Thread.STleep(2000);
}

) .StartQ;

new Thread(new ThreadStart(() =>

212 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

{
Tock (sync)
{
Thread.S1eep(2000);
}

1) .StartQ;
Console.WriteLine("Press enter to exit");
Console.ReadLine();

The Sample Application
This is the source code for the application used earlier in this chapter.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;
using System.Diagnostics;

namespace Reporting_Example
{

class XClass

{
public void MA(object param) { MB(param); }
public void MB(object param) { MC(param); }

object sl = new object();
object s2 = new object(Q);

pubTlic void MC(object param)

{
if (param == "1")
{
MDQ);
}
if (param == "2")
{
MEQ ;
}
if (param == "3")
{
MFQO;
}
}

public void MD()

Chapter 7
MEQ;
}
public void MEQ
{
while (true) Thread.SpinWait(int.MaxValue / 20);
}
pubTlic void MF(Q)
{
MLO;
}
public void MG(object param)
{
MH(param) ;
}
public void MH(object param)
{
MI(param) ;
}
pubTlic void MI(object param)
{
if (param == "4")
{
MIO;
}
else
{
MKQO ;
}
}
pubTlic void MIQ)
{
Monitor.Enter(sl);
Thread.SpinWait(int.MaxValue / 20);
Monitor.Enter(s2);
}
pubTlic void MK(Q)
{
Monitor.Enter(s2);
Thread.SpinWait(int.MaxValue / 10);
Monitor.Enter(sl);
}
public void ML)
{
MMQO 5
}

pubTlic void MM(Q)

Reports and Debugging

213

214 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

{
while (true) { Thread.SpinWait(int.MaxValue / 3); Debugger.Break(); };
}
}
class Program
{
static XClass obj = null;
static void Main(string[] args)
{
obj = new XClassQ);
Task.Factory.StartNew(obj.MA, "1");
Task.Factory.StartNew(obj.MA, "2");
Task.Factory.StartNew(obj.MA, "3");
Task.Factory.StartNew(obj.MG, "4");
Task.Factory.StartNew(obj.MG, "5");
Console.WriteLine("Press enter to exit");
Console.ReadLine();
}
}
}
Summary

Visual Studio 2010 has been enhanced to assist in maintaining and debugging parallel appli-
cations. The enhancements include the introduction of new debugging windows and reports.
Parallel programs are generally more sophisticated and complex than sequential programs.
The Task Parallel Library (TPL) has done an excellent job of abstracting developers from the
hardcore details and nuances of developing a parallel application. However, when something
goes wrong, you need a new assortment of tools for debugging multicore applications. A
suite of these tools is now available in Visual Studio 2010.

You can now create and open managed dumps for post-mortem analysis. This is especially
beneficial for production debugging in which a full debugger might not be installed on the
target machine. Dumps are also convenient for remote debugging. For these reasons, the
integration of managed dumps into Visual Studio 2010 is helpful to all developers of man-
aged applications, including programmers of parallel applications.

The Threads and Call Stack windows are not new to Visual Studio but are nonetheless useful
when you are debugging a parallel application. The Threads window lists the active threads
with details such as thread identifier, status of the thread, category of thread, and thread
name. In the Threads window, you can flag a thread, freeze a thread, and switch context to a
particular thread. The Call Stack window shows the call stack of the current thread.

Chapter 7 Reports and Debugging 215

The Parallel Tasks and Parallel Stacks windows are new in Visual Studio 2010. The Parallel
Tasks window provides detailed information on each task. Task identifier, status of the task,
location of the task, entry point method, and additional information are some of the details
available. As in the Threads window, in the Parallel Tasks window you can flag a task or freeze
the underlying thread. You can also jump to the source code for that task. There are two
views of the Parallel Stacks window. The Threads view shows the call stacks for active threads.
The Tasks view shows the call stacks from the perspective of active tasks. You can point to
nodes in the Parallel Stacks window to get valuable information on either tasks or threads.

The Concurrency Visualizer works with the Visual Studio Profiler to provide detailed graphs
and reports on the performance of a parallel application. The CPU Utilization view shows
utilization of logical cores for the current process, system processes, all other processes, and
idle time. The Threads view plots each thread along a timeline. Each thread is separated into
segments based on different categories, such as execution, synchronization, I/O, sleep, and
so on. The top rows of the Threads view are reserved for Disk Reads and Disk Writes. Finally,
the Cores view maps thread execution to processor cores.

Quick Reference

To

View the current tasks of an application

Show additional detail about a particular
item in a parallel debugging window

Display the call stack from the perspective
of parallel execution

Scroll to a specific quadrant of a large
Parallel Stacks window view

Profile a parallel application

Create a report to display CPU utilization
over a specific timeframe

In a deadlock, identify the controlling
thread

Do this

Open the Parallel Tasks window by clicking the Debug
menu and selecting Parallel Tasks Window.

Point to the item.

Open the Parallel Stacks window by clicking the
Debug menu and selecting the Parallel Stacks
Window.

Use the Bird's Eye View button (in the lower-right
corner) and pan the view (the shaded area).

Start the Concurrency Visualizer by opening the
Analyze menu and then select Launch Performance
Wizard. In the Performance Wizard dialog box,
choose the Concurrency option.

In the Concurrency Visualizer, open the CPU
Utilization view.

Open the Threads view of the Concurrency Visualizer.
Select a deadlocked segment. In the report section
(at the bottom), view the Unblocking Stack report.

Index

Symbols and Numbers

64-bit applications 197

== (double equal sign) 91

.NET Framework 4
concurrent collections 118, 144
customization 147
loop parallelism 15
parallel programming support 1
performance tuning 2
PLINQ 90
SpinLock and SpinWait structures 120
SpinWait 6
thread pool 15, 28, 94, 101, 103, 148, 171, 179
TPL 11,16
wrappers for native critical sections 5

A

accounting applications 59, 149
Accounts Payable 149
Accounts Receivable 149
Action delegates

for loop 64

Parallel.Invoke method 22

PLINQ 99

TaskFactory.StartNew method 23
Add method 150
AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>
updateFactory>) method 135

Add(T item) method 131
AggregateException 30, 33, 57, 73, 87, 105, 116
AggregateException.InnerExceptions property 87, 105
Aggregate method 109
Algorithm Structure pattern 14
Amdahl's Law

about 7

Gustafson's Law 9

Speedup 16
antecedent task 46
arrays

integer arrays 95

parallel queries on string arrays 99
askCreationOptions.PreferFairness option 28
askFactory.ContinueWhenAll method 49
AsOrdered clause 103, 116
AsParallel clause 94, 102, 109, 115
AsParallel method 94, 95, 102
AsSequential clause 102, 116
associative property 76
asynchronous input-output, concurrent execution 4
AttachToParent option 27

classes

Barrier class 38-41
Barsis, Edward, Gustafson’s Law 8
base keywords 173
benchmarking

affirmation of expected performance

improvement 148

Speedup 7
binary comparisons 36
Bird's Eye View 195
Blocking and Exclusive Blocking 204
BlockingCollection 119, 137-144, 145
blocks, try/catch block 51
BoundedCapacity property 144
breakpoints 183
break statement 67
Bubble sort 36
buffering, PLINQ 102

C

cache misses 5
calculations, Group Tasks Pattern 12
call stacks 193
Call Stack window 185, 187, 214
cancellation
about 43-46
parallel loops 68
PLINQ 107
CancellationToken.Cancel method 116
CancellationToken property 107
CancellationTokenSource class 107, 116
CancellationTokenSource type 43
CancellationToken type 43
catch blocks
defining 105
handling exceptions 31
unhandled exceptions 73
C#, foreach loop 67
child and parent tasks 52
chunk size
about 148
custom paritioners 162
default 63, 86
Parallel.Create method 161
Partitioner<TSource> 163
task partitioners 156
classes
Barrier class 38-41
CancellationTokenSource class 107, 116
ConcurrentStack class 125
Interlocked class 76

217

218 classes (continued)

classes (continued) concurrent instruction and data streams 3
MapReduce class 81, 84 ConcurrentQueue 119, 129, 144
Monitor class 76 ConcurrentStack 119, 124-129, 144
OrderablePartitioner<TSource> 156 ConcurrentStack class 125
OrderablePartitioner<TSource> class 168-171, 179 Condition breakpoint 183
Parallel class 64 console applications 157
ParallelOptions class 173 Console.ReadLine method 25, 66, 92
Partitioner<TSource> class 156, 162-167, 179 Console. WriteLine method 64, 66
Program class 157, 160 consumer-producer collections 148
Stopwatch class 95 contention
System.Ling.ParallelEnumerable class 90 custom schedulers 171
Task class 22-28 defined 5
TaskScheduler class 171, 173, 174, 179 kernel-mode and user-mode resources 5
Cleanup method 175 SpinWait 123
CLR (common language runtime) context scheduler 171
parallel programming and performance 1 context switches
unhandled exceptions in tasks 30 about 4
collections. See also concurrent collections performance 5, 21
ConcurrentBag collection 130 per thread 205
ConcurrentDictionary collection 117 continuation tasks 46-52
ConcurrentQueue collection 119 Continue methods 57
consumer-producer collections 148 continue statement 67
integer collections 36 cooperative cancellation 43
MapReduce pattern 80, 112 CopyTo method 152
numbers collection 165 Cores view 205, 205-212, 215
parallelism 19 Count property 130, 131, 135, 144, 149, 179
Pivot sorts 38 Count reduction 109
producer-consumer collections 148-156 CPU Utilization view 200, 208, 215
thread-safe and lock-free collections 6 cross-core context switch
combineAccumulatorsFunc function 109 defined 5
comments in code 36 performance 205
common language runtime. See CLR Ctrl+F5 shortcut 25
commutative property 75 Ctrl+Shift+Esc key combination 61
CompleteAdding method 141 Current Stack report 204
compute-bound tasks 157 customization 147-180
concurrency context scheduler 171
parallel applications 4 identifying opportunities for 147
testing: data parallelism 63 OrderablePartitioner<TSource> class 168-171
Concurrency Visualizer 197-212 partitioners 162-171
about 215 Partitioner<TSource> class 162-167
Cores view 205-212 producer-consumer collections 148-156
CPU Utilization view 200 schedulers 171-178
performance tuning 2 task partitioners 156-162
Threads view 202-205 task scheduler 172-178
ConcurrentBag 130, 144 custom partitioners, load balancing 148

concurrent collections 117-146
BlockingCollection 137-144
concepts 119 D
ConcurrentBag 130
ConcurrentDictionary 135-137
ConcurrentQueue 129
ConcurrentStack 124-129
producer-consumer collections 119 data parallelism 59-88

SpinLock 120 compared to task parallelism 59

SpinWait 122 MapReduce pattern 80-86
synchronization 120-144 reduction 74-80

ConcurrentDictionary 117, 135-137, 144
concurrent execution, advantages 4

database management 59

data collections, Geometric Decomposition pattern 14
Data Decomposition pattern 11

data dependency 12

unrolling sequential loops into parallel tasks 60-74

Data Sharing pattern 13
data streams
concurrent instruction 3
multiple 3-4
deadlocks, finding source 190
Dean, Jeffrey 80
debugging and reports 181-216
Concurrency Visualizer 197-212
debugging with Visual Studio 2010 1, 182-188
Parallel Stacks window 192-197
Parallel Tasks window 188-192
sample application 212-214
decryption routine, MISD 3
deferred execution 91
delegates, localFinally delegate 77
dependencies
data parallelism 62
LINQ reduction 108
Loop Parallelism pattern 15
Order Tasks pattern 12
unrolling sequential loops into parallel tasks 74
dequeuing, elements in a collection 119
derivative collections, MapReduce pattern 112
development life cycle 10
Dictionary collection 118
Divide and Conquer pattern 14
domains, queries and LINQ 90
double equal sign (==) 91
dual-core architecture
about 2
Speedup 6
dumps 184
duration, defined 97

efficiency. See performance
embarrassingly parallel 20
Enqueue (T item) method 130
Enumerable.Range method 110
equality, double equal sign (==) 91
ETW (Event Tracing for Windows) 197
events, synchronization 5
exceptions

about 57

cancellation exceptions 44

OperationCancelledException exception 46

PLINQ 105

unhandled exceptions in tasks 30-36

unrolling sequential loops into parallel tasks 72
Exclusive Blocking 204
ExecuteWithThreadLocal method 188
execution

categories 202

Group Tasks Pattern 12

time: preempting threads 4
expressions. See lambda expressions

graphics rendering, concurrent execution

F

F9 function key, breakpoint 183

factorials 78

Factory property 23

fantasy sports leagues 59

FIFO (first-in, first-out)
ConcurrentQueue 129
global queue 55

Filter breakpoint 183

Filter function 85

Filter parameter 84

Finding Concurrency pattern 11-13
Data Decomposition pattern 11
Data Sharing pattern 13
Group Task pattern 12
importance of 16
Order Tasks pattern 12
Task Decomposition pattern 11

Flynn's taxonomy 3

ForAll method 99

ForAll operator 99

foreach loop 34, 65, 92

foreach method 92, 99

Fork/Join pattern 15

for loop
Finding Concurrency pattern 11
unrolling sequential loops into parallel tasks 64-67

for method 99

Freeze command 187

FROM clause 90

Function delegates 28

functions
combineAccumulatorsFunc function 109
Filter function 85
localFinally function 76
object-oriented programming 11
updateAccumulatorFunc function 109

FunctionTracker 127

Func<TResult> delegate 28

G

garbage collection, unhandled exceptions 32
Geometric Decomposition pattern 14
GetConsumingEnumerable method 140
GetDynamicPartitions method 163, 164, 179
GetEnumerator method 149, 151, 164, 179
GetlnstanceCount method 151
GetOrderableDynamicPartitions method 168
GetOrderablePartitions method 168
GetPartitions method 162, 165, 179
GetScheduledTasks method 173, 175, 179
Ghemawat, Sanjay 80
global queue

custom schedulers 171

using 54
graphics rendering, concurrent execution 4

219

220

GroupBy clause

GroupBy clause 102
group operation parameter 82
group tasks
Group Tasks Pattern 12
Order Tasks pattern 12
Gustafson’s Law 8

H

handling exceptions: unrolling sequential loops into
parallel tasks 72

hardware, performance improvement trends 2

heap, multithreading 4

Hit Count breakpoint 183

hyperthreading 200

Hyper-Threading Technology 3

IDisposable.Dispose method 126
idle time, processor cores 205
IEnumerable.GetEnumerator method 164
|IEnumerable interfaces 89
|IEnumerable<TSource> interface 163
implementation-agnostic, Algorithm Structure
pattern 14

Implementation Mechanisms pattern 16
in clause 91
indexes, data parallelism 62
InnerExceptions property 30
input-output requests, preempting threads 4
insertion sort 37
instruction streams, multiple 3-4
integer arrays 95
integer collections, sorting 36
interleaving

about 4

benefits of 16
Interlocked.Add method 77
Interlocked class 76
interrupting a loop 67-72
1/0O-bound threads 104
1/0 execution category 202
IProducerConsumerCollection interface 119, 120, 124,

129, 137, 145, 150, 179

IProducerConsumerCollection<T>interface 149
ISEmpty property 125, 130-131, 135
IsHeldByCurrentThread property 122
IsHeld property 122
IsSynchronized property 149, 152
IsSynchronize property 179
iterations

handling exceptions 72

independent loop iterations 74

J

Just-In-Time debugging 183

K

kernel-level locks, SpinWait 122
kernel-mode

contention 5

context switch 4

locking: concurrent collections 144
KeysNormalized property 168
KeysOrderedAcrossPartitions property 168
KeysOrderedInEachPartition property 168
KeyValuePairs 114

L

lambda expressions 28, 35, 52, 70, 79, 92, 110, 133, 160
Language Integrated Query. See LINQ
lastFinally operation 87
libraries
MapReduce library 81
TPL 11, 16, 60, 64, 147, 178, 214
LIFO (last-in, first-out) 55
lightweight synchronization
concurrent collections 120
objects 5
spinning 6
synchronization 16
link lists, Recursive Data pattern 14
LINQ (Language Integrated Query). See also PLINQ
about 89
LINQ to Objects 89
LINQ to SQL 89
LINQ to XML 89
reduction and dependencies 108
lists
Data Decomposition pattern 11
insertion sort 37
live debugging with Visual Studio 2010 182
load balancing
Geometric Decomposition pattern 14
parallel programming 16
task partitioners 156
localFinally delegate 77
localFinally function 76
localFinally method 77
locallnit method 77
local queues, custom schedulers 171
Location breakpoint 183
LockRecursionException 121
lock statement 5, 76
logging scheduler 148
logical cores 200
logical gates, Barrier class 38
logical parallelism versus physical parallelism 4
logical versus physical cores 3
LongRunning option 27
loop-level parallelism 59
Loop Parallelism pattern 15

loops
Data Decomposition pattern 11
data parallelism 59
foreach loop 34, 65, 92
iterations: dependencies 15
Parallel.ForEach loop 158
Parallel.For loop 67
parallel loops 75
unrolling sequential loops into parallel tasks 60-74

M

MapReduce class 84
MapReduce library 81
MapReduce.Map method 81, 84
MapReduce pattern 80-86, 116
MapReduce, PLINQ 112-115
MapReduce.Reduce method 81
Master/Worker pattern 15
matching keys, MapReduce 82
matrices, multiplying 110
Memory Management execution category 202
merge options, PLINQ 102
methods

Add method 150

AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>

updateFactory>) method 135
Add(T item) method 131
Aggregate method 109
askFactory.ContinueWhenAll method 49
AsParallel method 94, 95, 102
Barrier class instance methods 39
CancellationToken.Cancel method 116
Cleanup method 175
CompleteAdding method 141
Console.ReadLine method 25, 66, 92
Console.WriteLine method 64, 66
Continue methods 57
CopyTo method 152
Enqueue (T item) method 130
Enumerable.Range method 110
ExecuteWithThreadLocal method 188
ForAll method 99
foreach method 92, 99
GetConsumingEnumerable method 140
GetDynamicPartitions method 163, 164, 179
GetEnumerator method 149, 151, 164, 179
GetlnstanceCount method 151
GetOrderableDynamicPartitions method 168
GetOrderablePartitions method 168
GetPartitions method 162, 165, 179
GetScheduledTasks method 173, 175, 179
IDisposable.Dispose method 126
IEnumerable.GetEnumerator method 164
Interlocked.Add method 77
localFinally method 77
MapReduce.Map method 81, 84

Microsoft .NET Framework thread pool, performance

MapReduce.Reduce method 81

Parallel.Create method 161

Parallel.ForEach method 65, 68, 76, 78, 86, 156, 157,
172,176

Parallel.For method 63, 64, 68, 86, 156

Parallel.Invoke method 15, 19, 22, 31

ParallelLoopState.Break method 68

ParallelLoopState.IsStopped method 68

ParallelLoopState.Stop method 68, 87

ParallelQuery.ForAll method 115

ParallelQuery<TSource>.ForAll method 99

Partitioner.Create method 157, 158-159, 179

PerformRollback method 51

PushRange(T [] items) method 125

Push(T item) method 125

QueueTask method 173, 175, 179

Remove method 150

Setup method 175

SpinLock.Enter method 121

SpinLock.TryEnter method 121

SpinOnce() method 123

SpinUntil(Func<bool> condition) method 123

StartNew method 23

SupportsDynamicPartitions method 163, 168

Task.ContinueWith method 47-48, 51

TaskFactory.ContinueWhenAny method 50

TaskFactory.StartNew method 23-27, 29, 54

TaskScheduler.FromCurrentSynchronizationContext
method 172

Task.Start method 27

Task.WaitAll method 23

Task.WaitAny method 23

Task.Wait method 29, 32

Thread.Sleep method 54

Thread.SpinWait method 25, 95, 157, 160

ToArray method 152

TryAdd method 149, 179

TryAdd(T item) method 135

TryDequeue method 137, 173, 175, 179

TryDequeue(out T result) method 130

TryEnter method 121

TryExecuteTasklInline method 173, 179

TryExecuteTask method 173, 175, 179

TryPeek(out T result) method 131

TryPop(out T result) method 125

TryPopRange(T [] items) method 125

TryTake method 132, 137, 149, 179

TryTake(out T item, Int32 millisecondsTimeout)
method 144

TryTake(out T item) method 144

TryTake(out T result) method 131

TryUpdate(TKey key, TValue newValue, TValue
comparisonValue) method 135

Wait method 30

Where method 93

WithCancellation method 116

Microsoft .NET Framework thread pool, performance 21

221

222

MIMD (Multiple Instruction Streams/Multiple Data Streams)

MIMD (Multiple Instruction Streams/Multiple Data
Streams) 3
MISD (Multiple Instruction Streams/Single Data
Stream) 3
Monitor class 76
monitors, SpinWait 122
Monitor type 5
Moore’s Law
about 1
multi-core architecture and processing speed 2
shift to multicore processors 16
multicore processors 2-6
MIMD 3
multiple instruction streams/multiple data
streams 3-4
multithreading 4-5
parallel programming support 1
performance 2
PLINQ 97
ratio of single-core versus multicore performance 7
synchronization 5-6
multiple data streams 3-4
multiple instruction streams 3-4
Multiple Instruction Streams/Multiple Data Streams
(MIMD) 3
Multiple Instruction Streams/Single Data Stream
(MISD) 3
Multiple Program/Multiple Data (MPMD) 3
multitasking, concurrent execution 4
multithreading 4-5
mutexes 5

N

namespaces
ParallelBook namespace 81
System.Collection.Concurrent namespace 162
System.Collections.Concurrent namespace 6, 15, 117,
130, 174
System.Diagnostics namespace 95
System.Ling namespace 90
System.Threading namespace 95, 120, 122, 206
System.Threading, System.Threading.Tasks
namespace 174
System.Threading.Tasks namespace 64, 66, 76, 78, 82,
171, 206
native critical sections, .NET Framework 5
NextSpinWillYield property 123
Normalize operation 156
numbers collection 165

(0

objects
AggregateException object 30
lightweight synchronization objects 5
ParallelOptions object 172, 176
synchronization objects 5

OpenMP 9
OperationCanceledException exception 46, 107
operations, Group Tasks Pattern 12
operators
ForAll operator 99
OrderablePartitioner<TSource> class 156, 168-171, 179
OrderBy clause 90, 102
order restrictions, data parallelism 62
Order Tasks pattern 12
originating threads 171
outer tasks 52
overhead. See performance
oversubscription
defined 5
interleaving 16

P

ParallelBook namespace 81
Parallel class 64
Parallel.Create method 161
ParallelExecutionMode clause 100, 116
ParallelExecutionMode enumeration 101
Parallel.ForEach loop 158
Parallel.ForEach method 65, 68, 76, 78, 86, 156, 157,
172,176

Parallel.For loop 67
Parallel.For method 63, 64, 68, 86, 156
Parallel.Invoke method 15, 19, 22, 31
parallelism. See data parallelism; task parallelism

goal of 19
parallelization-to-overhead ratio 156
Parallel Language Integrated Query. See PLINQ
parallel loops

cancelling 68

reduction 75
ParallelLoopState.Break method 68
ParallelLoopState.IsExceptional property 73
ParallelLoopState.IsStopped method 68
ParallelLoopState.Stop method 68, 87
ParallelIMergeOptions enumeration 102
ParallelOptions class 173
ParallelOptions object 172, 176
parallel programming

about 1-18

concurrent collections 117-146

customization 147-180

data parallelism 59-88

PLINQ 89-116

reports and debugging 181-216

task parallelism 19-58
ParallelQuery.ForAll method 115
ParallelQuery<TSource> 99
ParallelQuery<TSource>.ForAll method 99
Parallel Stacks window 192-197

about 215

performance execution 2

Tasks view 196-197

Threads view 193-196

Parallel Tasks window 188-192
about 215
performance execution 2
parameters
Filter parameter 84
group operation parameter 82
MapReduce pattern 113
ParallelExecutionMode enumeration 101
TaskContinuationOptions parameter 50
parent and child tasks 52
parent-child relationship. 46
Partitioner.Create method 157, 158-159, 179
partitioners
custom partitioners 162-171
load balancing 148
OrderablePartitioner<TSource> class 168-171
Partitioner<TSource> class 162-167
task partitioners 156-162
Partitioner<TSource> class 156, 162-167, 179
patterns 9-15
Algorithm Structure pattern 14
Data Decomposition pattern 11
Data Sharing pattern 13
engineering solutions with 9
Finding Concurrency pattern 11-13
Group Task pattern 12
Order Tasks pattern 12
producer-consumer pattern 148
Supporting Structures pattern 15
Task Decomposition pattern 11
Payroll 149
performance
benchmarking 148
Bubble sort 36
CLR 1
ConcurrentBag 130
concurrent collections 117
context switches 4, 5
custom schedulers 171
data parallelism example 61
dependencies 20
Gustafson's Law 8
hardware trends 2
optimizing the use of the available processor cores
with parallel execution of cores 1
PLINQ queries 97, 100
scaling 20
sequential processing 6
Speedup 6, 16
task partitioners 156
threads 21
unrolling sequential loops into parallel tasks 63
Visual Studio Profiler and Concurrency Visualizer 2
Performance Explorer 200
PerformRollback method 51
physical parallelism versus logical parallelism 4
physical versus logical cores 3
pivot sort 38, 42

properties

PLINQ (Parallel Language Integrated Query) 89-116
about 90-98
AsOrdered 103
AsSequential 102
cancellation 107
ForAll operator 99
handling exceptions 105
MapReduce 112-115
MapReduce pattern 81, 87
operators and methods 99-105
ParallelExecutionMode 100
reduction 108-115
WithDegreeOfParallelism 104
WithMergeOptions 101
polling, cooperative cancellation 43
post-mortem analysis 184
precedence, unhandled exceptions 73
predecessor dependency 12
preempting threads 4
Preemption execution category 202
preemption segments 204
PreferFairness option 27
priority, preempting threads 4
problem domain, software development life cycle 10
processes, synchronization 5
processor affinity 5
processor cores, performance 1
processor speed and heat 2
Processor Utilization 98
producer-consumer collections 119, 148, 148-156
producer-consumer pattern, concurrent collections 144
Profile Report 204
Program class 157, 160
properties
AggregateException.InnerExceptions property 87,
105
associative property 76
BoundedCapacity property 144
CancellationToken property 107
commutative property 75
Count property 130, 131, 135, 144, 149, 179
Factory property 23
InnerExceptions property 30
ISEmpty property 125, 130-131, 135
IsHeldByCurrentThread property 122
IsHeld property 122
IsSynchronized property 149, 152
IsSynchronize property 179
KeysNormalized property 168
KeysOrderedAcrossPartitions property 168
KeysOrderedInEachPartition property 168
NextSpinWillYield property 123
ParallelLoopState.IsExceptional property 73
SupportsDynamicPartitions property 164, 179
SyncRoot property 118
Task.Result property 29
TaskScheduler property 173
Task.Status property 31

223

224

PushRange(T [] items) method

PushRange(T [] items) method 125
Push(T item) method 125

Q

quad-core architecture
about 2
Speedup 6
queries. See LINQ; PLINQ
queues
Data Decomposition pattern 11
elements in a collection 119
global queue 54
work-stealing queue 54
QueueTask method 173, 175, 179
quick sort 38

R

range partitioning, chunk size 148, 159
read-only data access type 13
read-write data access type 13
Recursive Data pattern 14
reduction
data access type 13
data parallelism 62, 74-80
defined 13
Group Tasks Pattern 12
PLINQ 108-115
refactoring, pivot sort 42
registry keys, synchronization 5
relationships 46-56
continuation tasks 46-52
Order Tasks pattern 12
parent and child tasks 52
work-stealing queue 54
Release mode 25
Remove method 150
reports and debugging 181-216
Concurrency Visualizer 197-212
debugging with Visual Studio 2010 182-188
Parallel Stacks window 192-197
Parallel Tasks window 188-192
sample application 212-214
resources and threads 20

S

sales analysis 59
sample application 212-214
Save Dump As dialog box 184
scalability
about 19
concurrent collections 117
Data Sharing pattern 13
PLINQ 94
schedulers 171-178
context scheduler 171
task scheduler 172-178

scheduling, tasks and threads 20
scientific applications 59
segments, execution categories 203
SELECT and FROM clauses 90
Select clause 101-102
semaphores
about 5
SpinWait 122
sequential loops, unrolling into parallel tasks 60-74
serializing
access: PLINQ 115
parallel applications 6
portions of your LINQ query 102
serial operations, decomposing into parallel tasks 14
Setup method 175
Shakespeare, William 84
shared files, data parallelism 62
shared memory, data parallelism 62
sharing data 13
shortcuts
Ctrl+F5 shortcut 25
Ctrl+Shift+Esc key combination 61
F9 function key, breakpoint 183
SIMD (Single Instruction Stream/Multiple Data
Streams) 3
single-core processors 2
interleaving 4
performance 6
ratio of single-core versus multicore performance 7
shift to multicore processors 16
SISD 3
Single Program/Multiple Data. See SPMD
SISD (Single Instruction Stream/Single Data Stream) 3
Sleep Blocking Profile 204
Sleep execution category 202
software development life cycle 10
software patterns. See patterns
sort examples 36-42
Barrier class 38-41
Bubble sort 36
insertion sort 37
pivot sort 38, 42
source-level debugging 182
Speedup 6-9
Amdahl's Law 7
Gustafson's Law 8
task partitioners 156
SpinLock 120, 144
SpinLock.Enter method 121
SpinLock.TryEnter method 121
spinning 5
SpinOnce() method 123
SpinUntil(Func<bool> condition) method 123
SpinWait 6, 122, 144
SPMD (Single Program/Multiple Data)
MIMD model 3
pattern 15
SQL queries, LINQ 90

stacks
Data Decomposition pattern 11
multithreading 4
size of and threads 21
start dependency 12
StartNew method 23
Stopwatch class 95
streams, multiple instruction streams/multiple data
streams 3-4
stress testing, data parallelism 63
string arrays, parallel queries 99
subtasks 46, 52
successor dependency 12
successor task 47
Supporting Structures pattern 15
SupportsDynamicPartitions method 163, 168
SupportsDynamicPartitions property 164, 179
synchronization 120-144
BlockingCollection 137-144
collections 118
ConcurrentBag 130
concurrent collections 144
ConcurrentDictionary 135-137
ConcurrentQueue 129
ConcurrentStack 124-129
data access 13
dependencies 74
multicore computing 5-6
SpinLock 120
SpinWait 122
Synchronization Blocking Profile report 204
Synchronization execution category 202
synchronization objects 5
SyncRoot property 118
System.Collection.Concurrent namespace 162
System.Collections.Concurrent namespace 6, 15, 117,
130, 174
System.Diagnostics namespace 95
System.Ling namespace 90
System.Ling.ParallelEnumerable class 90
System.Threading namespace 95, 120, 122, 206
System.Threading, System.Threading.Tasks
namespace 174
System.Threading.Tasks namespace 64-65, 76, 78, 82,
171, 206

T

Task class 22-28

Parallel.Invoke method 22

TaskFactory.StartNew method 23-27

Task.Start method 27
TaskContinuationOptions parameter 50
Task.ContinueWith method 47-48, 51
TaskCreationOption 27
TaskCreationOption.LongRunning option 28
TaskCreationOptions.AttachedToParent option 53, 57
Task Decomposition pattern 11

threads

TaskFactory.ContinueWhenAny method 50
TaskFactory.StartNew method 23-27, 29, 54
task parallelism 19-58
about 19-30
Barrier class 38-41
Bubble sort 36
cancellation 43-46
compared to data parallelism 59
continuation tasks 46-52
Function delegates 28
insertion sort 37
parent and child tasks 52
pivot sort 38, 42
relationships 46-56
sort examples 36-42
Task class 22-28
threads 21
unhandled exceptions in tasks 30-36
unrolling sequential loops into parallel tasks 60-74
work-stealing queue 54
Task Parallelism pattern 14
Task Parallel Library. See TPL
Task.Result property 29
tasks
about 21
compute-bound tasks 157
cooperative cancellation 43
.NET Framework 4 thread pool 28
partitioners 156-162
relationships: Order Tasks pattern 12
schedulers 148, 172-178
subtasks 52
TaskScheduler class 171, 173, 174, 179
TaskScheduler.FromCurrentSynchronizationContext
method 172
TaskScheduler property 173
Task.Start method 27
Task.Status property 31
Tasks view of the Parallel Stacks window 196-197
Task.WaitAll method 23
Task.WaitAny method 23
Task.Wait method 29, 32
TBB (Threading Building Blocks) 9
testing
and data parallelism 63
Speedup 7
threads
concurrent collections 118
context switches 205
debugging 185-188
1/0-bound threads 104
local storage 21
originating threads and the context scheduler 171
queuing and dequeuing elements in collections 119
SpinWait 123
synchronization 5
task parallelism 21
tasks and scheduling 20

225

226 threads (continued)

threads (continued) interrupting a loop 67-72
thread-local data: Data Sharing pattern 13 performance 63
tracking thread ownership 121 updateAccumulatorFunc function 109
thread-safe applications 5 user interface, concurrent execution 4
Thread.Sleep method 54 user-mode
Thread.SpinWait method 25, 95, 157, 160 contention 5
Threads view context switch 4
about 202-205 using statement 23, 41, 92
Disk Reads and Disk Writes 215 utilization, PLINQ queries 104

of the Parallel Stacks window 193-196
Threads window 185, 214
ToArray method 152 V
Toub, Stephen 80

) virtual cores
TPL (Task Parallel Library)

Para about 200

customization 147 Hyper-Threading Technology 3
customizing 178 Visible Timeline Profile 202, 204
granularity 60 _) Visual Studio 2010 182-188
Implementation Mechanisms design phase 11 debugging threads 185-188

.NET Framework 4 16

parallel for loop 64

using 214
tracking thread ownership 121
trees, Recursive Data pattern 14
TryAdd method 149, 179
TryAdd(T item) method 135

debugging windows 1
live debugging 182
parallel programming support 1
post-mortem analysis 184
Visual Studio Profiler, performance tuning 2

try blocks 105 W
try/catch block 51, 141
TryDequeue method 137, 173, 175, 179 Wait method 30
TryDequeue(out T result) method 130 weather reporting 59
TryEnter method 121 When Hit breakpoint 183
TryExecuteTasklnline method 173, 179 Where clause 92
TryExecuteTask method 173, 175, 179 Where method 93
TryPeek(out T result) method 131 Windows operating system
TryPop(out T result) method 125 closing threads 20
TryPopRange(T [] items) method 125 thread scheduling 21
TryTake method 132, 137, 149, 179 Windows Task Manager 61
TryTake(out T item, Int32 millisecondsTimeout) WithCancellation method 116
method 144 WithDegreeOfParallelism clause 104, 116
TryTake(out T item) method 144 WithExecutionMode clause 101
TryTake(out T result) method 131 WithMergeOptions clause 101, 116
TryUpdate(TKey key, TValue newValue, TValue word count example 84-86
comparisonValue) method 135 work stealing
tuples, task partitioners 157 performance optimization 55
two-phase synchronization 123 queue 54

wrappers, .NET Framework 5
write-only data access type 13

U

Ul Processing execution category 203 Y
Unblocking Stack 205
undersubscription 5 yield statement 164
unhandled exceptions
about 56

in tasks 30-36
unit testing, data parallelism 63
unrolling sequential loops into parallel tasks 60-74
dependencies 74
for loop 64-67
handling exceptions 72

Donis Marshall

Donis Marshall has more than 20 years of experience using Microsoft technologies to design
and build enterprise software for leading companies in several industries. As a Microsoft
MVP, he is recognized as an exceptional technical community leader who actively shares

his real-world expertise with others. Experienced in training developers and engineers with
Microsoft products, Donis is the author of Programming Microsoft Visual C# 2008, Solid
Code, and Programming Microsoft Visual C# 2005.

